(-w^2+3w-5)+(7w^2+6w+2)=0

Simple and best practice solution for (-w^2+3w-5)+(7w^2+6w+2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-w^2+3w-5)+(7w^2+6w+2)=0 equation:



(-w^2+3w-5)+(7w^2+6w+2)=0
We get rid of parentheses
-w^2+7w^2+3w+6w-5+2=0
We add all the numbers together, and all the variables
6w^2+9w-3=0
a = 6; b = 9; c = -3;
Δ = b2-4ac
Δ = 92-4·6·(-3)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{17}}{2*6}=\frac{-9-3\sqrt{17}}{12} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{17}}{2*6}=\frac{-9+3\sqrt{17}}{12} $

See similar equations:

| (1/1x-1)+4=(17/1x-1) | | 7.6^x=(0.8)^-x | | X-3/7+x+4/2=1 | | 189+4n=941 | | Y-5=3/5u;u | | 19+27z=505 | | -.11x=-1.1 | | Y-5=3/5u | | 15.4=u-2+ 11.8 | | 2n-24=-6 | | n/21-742=-724 | | -830=-78+8g | | s/29+128=132 | | s/11+395=420 | | v/8-(-19)=20 | | 60=2t-(-12) | | 7z+10=87 | | 3p+7​=12+2p | | c/9+90=83 | | 951=51+10m | | -20n+-88=-948 | | 501=29t-50 | | 12.6-2h=9.8 | | x*x-14=16 | | h/28-1=3 | | h/28−1=3 | | (2/x+2)+(3/x-4)=(18/(x+2)(x-4)) | | 3=k/29-3 | | 3=k29−3 | | 6d-51=129 | | (1/x-1)+4=(17/x-1) | | -16+26j=-666 |

Equations solver categories